Abstract
Liquid chemical looping technology is an innovation of chemical looping conversion technology. Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier and improve the process efficiency. In this paper, based on Gibbs minimum free energy method, the thermodynamic characteristics of biomass liquid chemical looping gasification were studied. Cellulose and lignin, the main components of biomass, were taken as the research objects. Bismuth oxide and antimony oxide were selected as liquid oxygen carriers. The results showed that when the temperature increased from 600 °C to 900 °C, the output of H 2 and CO in the products of cellulose gasification increased from 0.5 and 0.3 kmol to 1.3 and 2.6 kmol respectively. Different ratios of oxygen carriers to gasification raw materials had the best molar ratio. The addition of steam in the system was beneficial to the increase of H 2 content and the increase of H 2 /CO molar ratio. Bi 2 O 3 and Sb 2 O 3 with different mass ratios were used as mixed oxygen carriers. The simulation results showed that the gasification temperature of biomass with different mixed oxygen carriers had the same equilibrium trend products. It could be seen from the results of product distribution that the influence of the mixing ratio of Bi 2 O 3 and Sb 2 O 3 on gas product distribution could be neglected. These results could provide simulation reference and data basis for subsequent research on liquid chemical looping gasification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.