Abstract

We measure the liquid argon scintillation response to electronic recoils in the energy range of $2.82$ to $1274.6~{\rm keV}$ at null electric field. The single-phase detector with a large optical coverage used in this measurement yields $12.8 \pm 0.3 ~ (11.2 \pm 0.3)~{\rm photoelectron/keV}$ for $511.0$-${\rm keV}$ $\gamma$-ray events based on a photomultiplier tube single photoelectron response modeling with a Gaussian plus an additional exponential term (with only a Gaussian term). It is exposed to a variety of calibration sources such as $^{22}{\rm Na}$ and $^{241}{\rm Am}$ $\gamma$-ray emitters, and a $^{252}{\rm Cf}$ fast neutron emitter that induces quasimonoenergetic $\gamma$ rays through a $(n, n'\gamma)$ reaction with $^{19}{\rm F}$ in polytetrafluoroethylene. In addition, the high light detection efficiency of the detector enables identification of the $2.82$-${\rm keV}$ peak of $^{37}{\rm Ar}$, a cosmogenic isotope in atmospheric argon. The observed light yield and energy resolution of the detector are obtained by the full-absorption peaks. We find up to approximately $25\%$ shift in the scintillation yield across the energy range and $3\%$ of the energy resolution for the $511.0$-${\rm keV}$ line. The Thomas-Imel box model with its constant parameter $\varsigma=0.033 ^{+0.012} _{-0.008}$ is found to explain the result. For liquid argon, this is the first measurement on the energy-dependent scintillation yield down to a few ${\rm keV}$ at null field and provides essential inputs for tuning the argon response model to be used for physics experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.