Abstract
AbstractCosmic‐ray shower, hitting the atmosphere all the time, includes high‐energy electrons. Electric fields in thunderstorms accelerate these electrons so that they can reach farther distances with producing secondary electrons. The strong field above 0.284 MV m−1 causes the Relativistic Runaway Electron Avalanches (RREA) process with an exponential increase of electrons. Even with lower electric fields below this RREA threshold which are usually measured in thunderstorms, an increase in electrons' kinetic energy and production of secondary electrons can occur without avalanche processes, known as Modification Of Spectra (MOS) of the cosmic‐ray shower. Both phenomena are related to observed gamma ray glow, which is bremsstrahlung emission from accelerated electrons in thunderstorms. We calculate an extended range and kinetic energy of electrons below the RREA threshold using an analytical evaluation and Geant4 Monte Carlo simulations. For example, at 0.280 MV m−1 slightly below the RREA threshold, 3 MeV electrons gain 100% of their original kinetic energy through the passage of the continuous slowing down approximation (CSDA) range defined at the null electric field, which is consistent with results in previous studies as the transition to the RREA process. Even at a lower field of 0.260 MV m−1, the energy recovery by the field allows an injected 20 MeV electron beam to extend its average electron range from 73 m, in the null field configuration, to 562 m. We have performed analytical calculation and Geant4 simulations of atmospheric electron behavior for initial electron energy of 0.1–100 MeV and an electric field below 0.290 MV m−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.