Abstract

Energy storage plays a significant role in the rapid transition towards a higher share of renewable energy sources in the electricity generation sector. A liquid air energy storage system (LAES) is one of the most promising large-scale energy technologies presenting several advantages: high volumetric energy density, low storage losses, and an absence of geographical constraints. The disadvantages of LAES systems lay on the high investment cost, large-scale requirements, and low round-trip efficiency. This paper proposes a new configuration using an air Rankine cycle (ARC) to reduce the exergy destruction during heat-exchanging in the liquefaction process while reducing liquefaction power consumption. The addition of the ARC increases the round-trip efficiency of the LAES from 54.1% to 57.1%. Furthermore, the energy consumption per kg of liquid air drops 5.3% in comparison to the base case LAES system. The effects of compression, storage, and pumping pressure on the system performance are investigated by parametric analysis. The results from exergy analysis show that the overall exergy destruction is decreased by 2% and a higher yield of liquid air can be achieved. The results reveal that the increase in the yield of liquid air is more important to the overall efficiency than the power that is generated by the Rankine itself. From an economic viewpoint, the proposed system has a better economic performance than the base case LAES system, decreasing the levelized cost of storage (LCOS) by almost 2%. The proposed configuration may improve the performance and economic competitiveness of LAES systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call