Abstract

This paper presents a Fabry-Perot fiber tip sensor based on an air-liquid filled cavity. The cavity is sealed off by a thin gold coated membrane of parylene C, between 300 and 350 nm, creating a particularly flexible diaphragm. In order to retrieve and track the cavity of interest from other cavities formed within the sensor tip, a signal processing of the feedback signal is performed by inverse fast Fourier transform. The experimental sensor has been manufactured and tested for temperature, giving cavity length sensitivities of 6.1 nm/°C and 9.6 nm/°C for temperature increase and decrease respectively. The external gas pressure response gives a sensitivity of 15 nm/kPa. The fiber sensor has also been adapted for force sensing after silicone embedment and has shown a sensitivity of about 8.7 nm/mN. Finally, the sensor has been tested on insertion into a human temporal bone, proving that it could be an interesting candidate for insertion force monitoring for robotic cochlear implantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call