Abstract

In this paper, the experiment of cellulose from corn stalk using 1, 2-propylene glycol (PG) and diethylene glycol (DEG) liquefaction catalyzed by phosphoric acid at atmosphere pressure was carried out. The effect of reaction time on the structural changes of cellulose in the liquefaction process of polyhydric alcohols was investigated, aiming at understanding the mechanism of cellulose liquefaction reaction under the action of acid catalyzed polyhydric alcohols. It was found that the liquefaction yield increased first and then decreased with the extension of reaction time, and reached the highest at 150min (99.34%). In the phase of increasing liquefaction yield, cellulose was degraded and translated into glucose, which was then converted into plenty of glycosides with PG/DEG. These glycosides were further converted into low molecular weight (LMW) substances such as hydrocarbons, acids, alcohols, esters, ketones, and ethers. At this time, the biofuel contained 70%-85% compounds with carbon number less than 25 and 5%-10% compounds with carbon number more than 25. As the prolongation of reaction time (after 150min), quantities of unstable free radicals formed by cellulose degradation could combine with each other or with hydrogen atoms provided by PG/DEG to produce relatively stable macromolecular substances. That is, the polydispersity (Mw/Mn, abbreviated Ð=1.28) of the generated biofuel at this stage no longer decreased. However, liquefaction residue produced at 240min had changed essentially, which was completely different from the liquefaction residue produced in the early stage of liquefaction. In conclusion, this paper revealed the partial reaction process of cellulose by studying the structural changes in the liquefaction process of polyhydric alcohols, which laid a theoretical foundation for exploring the liquefaction mechanism of cellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call