Abstract

Soil liquefaction can be induced by natural events that entail complicated loading directions and magnitudes. To investigate the liquefaction behaviour of granular material under complex loading conditions, a series of strain-controlled cyclic simple shear tests are conducted on the uniform-sized glass beads. These tests include uni-directional and multi-directional loading paths. An energy-based method is used to assist the understanding of the cyclic behaviour of the specimens. After the first liquefaction happens, the specimens are re-consolidated and subjected to monotonic undrained shearing to investigate their post-liquefaction behaviour. The test results indicate that the specimens subjected to multi-directional cyclic shearing are more prone to liquefy than those under uni-directional loading. Furthermore, the cyclic shear strain amplitude and cyclic loading path have significant influences on the soil liquefaction resistance, re-consolidation volumetric strain and post-liquefaction shear strength. Nevertheless, the total energy that is dissipated for liquefying a specimen is only dependent on its relative density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.