Abstract

The undrained cyclic behavior of rubber-sand mixture (RSM) is usually investigated under the cyclic loads with unidirectional shear stress. However, bidirectional shear stress exists in many engineering practices subjected to complex loads, under which the liquefaction resistance of soil may be overestimated. Furthermore, the soil behavior under bidirectional shear stress exhibits quite differently from that under unidirectional shear stress. Therefore, undrained cyclic behavior of RSM under bidirectional shear stress should be further investigated. In this study, several specimens made by RSM with different rubber contents (from 10 % to 30 % by volume) are consolidated under two conditions, K0 consolidation and the combination of K0 consolidation with consolidation shear stress (CSS). Subsequently, numerous tests are conducted under the unidirectional and bidirectional cyclic loading paths to investigate the cyclic undrained behavior of RSM. The results show that the bidirectional shear loads incur a larger normalized pore water pressure (PWP) than unidirectional shear loads. In addition, an energy-based method is employed to understand the relationship between cumulative energy and normalized PWP. During the stage of rapidly accumulating PWP, the dissipated energy required to generate the same normalized PWP is identical, and it is independent of the shapes of loading paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.