Abstract
The effect of preweld overaging heat treatment on the microstructural response in the heat-affected zone (HAZ) of a precipitation-hardened nickel-base superalloy INCONEL 738LC subjected to the welding thermal cycle (i.e., rapid) was investigated. The overaging heat treatment resulted in the formation of an interfacial microconstituent containing M23X6 particles and coarsening of primary and secondary γ′ precipitates. The HAZ microstructures around welds in the overaged alloy were simulated using the Gleeble thermomechanical simulation system. Microstructural examination of simulated HAZs and those present in tungsten inert gas (TIG) welded specimens showed the occurrence of extensive grain boundary liquation involving liquation reaction of the interfacial microconstituents containing M23X6 particles and MC-type carbides. In addition, the coarsened γ′ precipitate particles present in the overaged alloy persisted well above their solvus temperature to temperatures where they constitutionally liquated and contributed to considerable liquation of grain boundaries, during continuous rapid heating. Intergranular HAZ microfissuring, with resolidified product formed mostly on one side of the microfissures, was observed in welded specimens. This suggested that the HAZ microfissuring generally occurred by decohesion across one of the solid-liquid interfaces during the grain boundary liquation stage of the weld thermal cycle. Correlation of simulated HAZ microstructures with hot ductility properties of the alloy revealed that the temperature at which the alloy exhibited zero ductility during heating was within the temperature range at which grain boundary liquation was observed. The on-cooling ductility of the alloy was significantly damaged by the on-heating liquation reaction, as reflected by the considerably low ductility recovery temperature (DRT). Important characteristics of the intergranular liquid that could influence HAZ microfissuring of the alloy in overaged condition are also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.