Abstract

The presented study highlights the efficiency of employing a KrF excimer laser to create diverse types of periodic nanostructures (LIPSS – laser induced periodic surface structures) on polyether ether ketone (PEEK) and polyethylene naphthalate (PEN) substrates. LIPSS structures are very important both in tissue engineering and find also strong application in the field of sensor construction, and SERS analysis. By exposing the polymer films below their ablation threshold to laser fluence ranging from 4 to 16 mJ·cm−2 at 6,000 pulses, we studied both single-phase exposure at beam incidence angles of 0° and 45°, and two-phase exposure. Atomic force microscopy analysis revealed that the laser-treated samples contained distinctive periodic patterns such as waves, globules, and pod-like structures each exhibiting unique surface roughness. Moreover, using analytical methods like EDS and XPS shed light on the changes in the atomic composition, specifically focusing on the C and O elements, as a result of laser exposure. Notably, in almost all cases, we observed an increase in oxygen percentage on the sample surfaces. This increase not only led to a decrease in the contact angle with water but also lowered the zeta potential value, thus showing that the modified samples have enhanced hydrophilicity of the surface and altered electrostatic properties. Last but not least, the samples were assessed for biocompatibility; we studied the interaction of the prepared replicates with mouse myoblasts (C2C12). The impact of globular/dot structures on the cell growth in comparison to pristine or linear LIPSS-patterned surfaces was determined. The linear pattern (LIPSS) induced the myoblast cell alignment along the pattern direction, while dot/globular pattern even enhanced the cytocompatibility compared to LIPSS samples. Through this comprehensive analysis, the research underscores the multifaceted implications of employing KrF excimer laser-induced nanostructures, ranging from surface morphology alterations to biocompatibility enhancements, thus, opening new avenues for advanced material engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call