Abstract

In this paper, the concept of Lipschitz stability is introduced to impulsive delayed reaction-diffusion neural network models of fractional order. Such networks are an appropriate modeling tool for studying various problems in engineering, biology, neuroscience and medicine. Fractional derivatives of Caputo type are considered in the model. The effects of impulsive perturbations and delays are also under consideration. Lipschitz stability analysis is performed and sufficient conditions for global uniform Lipschitz stability of the model are established. The Lyapunov function approach combined with the comparison principle are employed in the development of the main results. The proposed criteria extend some existing stability results for such models to the Lipschitz stability case. The introduced concept is also very useful in numerous inverse problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.