Abstract
This paper deals with the problem of finding bi-Lipschitz behavior in non-degenerate Lipschitz maps between metric measure spaces. Specifically, we study maps from (subsets of) Ahlfors regular PI spaces into sub-Riemannian Carnot groups. We prove that such maps have many bi-Lipschitz tangents, verifying a conjecture of Semmes. As a stronger conclusion, one would like to know whether such maps decompose into countably many bi-Lipschitz pieces. We show that this is true when the Carnot group is Euclidean. For general Carnot targets, we show that the existence of a bi-Lipschitz decomposition is equivalent to a condition on the geometry of the image set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.