Abstract
Formyl peptide receptors (FPRs) are members of seven transmembrane G protein-coupled receptors superfamily that exhibit different responses based on the nature of stimulating ligand type. FPRs have been shown to be present in platelets and regulate their function. However, the effect of formyl peptide receptor 2 (FPR2/ALX) lipid ligands on platelets has not yet been addressed. Hence, we sought to study the role of FPR2/ALX ligand and lipoxin A4 lipid analogue, BML-111, in the modulation of platelet function and thrombus formation. Immunofluorescence microscopy showed subcellular distribution and peripheral mobilisation of FPR2/ALX in stimulated platelets. This variation in distribution was further confirmed using flow cytometry. BML-111 inhibited a range of platelet activities in a dose-dependent manner in response to several platelet agonists. This included aggregation, fibrinogen binding to integrin αIIbβ3, α-granule secretion, dense granule secretion, Ca2 + mobilisation and integrin αIIbβ3-mediated outside-in signaling. The selectivity of BML-111 for FPR2/ALX was confirmed using FPR2/ALX deficient mice in flow cytometry assays. In vitro thrombus formation was also inhibited by various concentrations of BML-111. Moreover, the levels of vasodilator stimulated phosphorylation (VASP-S157) increased significantly after BML-111 treatment in resting and stimulated platelets via protein kinase A (PKA) independently of cyclic adenosine monophosphate (cAMP) signaling. Together, our findings demonstrate the significance of BML-111 as a modulator of platelet function via FPR2/ALX and unravel the thrombo-protective potentials of BML-111 induced signaling against thrombo-inflammatory diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.