Abstract

Tumor targeted drug delivery system with high efficiency of tumor accumulation, cell internalization and endosomal escape was considered ideal for cancer therapy. Herein, a cleavable polyethylene glycol (PEG) and octaarginines (R8) co-modified liposome (CL-R8-LP) was developed, in which the cholesterol was used as an alternative anchor to the commonest phospholipids for the diversified development of surface modification. The in vitro hemolysis assay and bio-distribution study demonstrated that CL-R8-LP improved biocompatibility and tumor accumulation compared with the single R8 modified liposomes (R8-LP), since the strong positive charges, toxicity and non-specificity of R8 were efficiently shielded by the outer cleavable PEG. And the cellular uptake, cytotoxicity and apoptosis of CL-R8-LP on C26 cells were much stronger than that of control liposomes in which R8 was not included or exposed. In addition, it was confirmed that CL-R8-LP entered cells via clathrin-mediated endocytosis and the macropinocytosis, and followed by a more efficient endosomal escape compared with R8-LP due to the topology change of R8. The enhanced in vivo delivery efficiency and anti-tumor efficacy were validated in C26 bearing mice. In conclusion, the results demonstrated that CL-R8-LP was a promising vehicle for enhancing the chemotherapy of solid cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call