Abstract

Lipoprotein lipase activity was studied in rat heart cell cultures grown in the presence of 20% fetal calf and horse serum and a medium concentration of triacylglycerol of 0.03 mg/ml. After 6–8 days, when the enzyme activity had reached high levels, the cells were incubated for 24 h in a medium containing 20% serum derived from fasted or fed rats. No change in enzyme activity occurred in the presence of fasted rat serum, but a 50% fall was observed with fed rat serum. When the complete culture medium was supplemented with rat plasma VLDL (0.075–0.75 mg triacylglycerol) a pronounced decrease in lipoprotein lipase activity occurred after 3–5 h of incubation. Similar extent of enzyme fall was observed also in the presence of triacylglycerol-rich lipoproteins isolated from rat plasma after feeding of safflower oil or lard, even though the fatty acid composition of the triacylglycerol varied markedly. As the addition of VLDL to the culture medium resulted in a lesser fall of heparin releasable than residual activity it seems that there was no direct inhibition of surface bound enzyme activity and that the transport of the enzyme to the cell surface was not affected. These data indicate that addition of VLDL to the culture medium resulted in a fall in enzyme synthesis, while total protein synthesis as determined by incorporation of [ 3H]leucine, remained unchanged. This inhibition could be reproduced by increasing free fatty acid concentration of the-medium, however addition of excess albumin to VLDL containing medium did not prevent the fall in enzyme activity. The present results obtained with cultured rat hearts cells suggest that in vivo plasma levels of triacylglycerol-rich lipoproteins could modulate the lipoprotein lipase activity of the heart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.