Abstract
Ulcerative colitis affects the inner lining of the large intestine, causing discomfort, pain, and digestion issues, and sometimes leading to life-threatening complications. With proper medication, symptoms and inflammation can be reduced, improving the condition. In this research, a multiwalled carbon nanotube (MWCN)-modified circular interdigitated electrode (circular-IDE) biosensor was developed to detect the ulcerative colitis biomarker lipocalin-2 and measured at 0-2V. A dual probing strategy with aptamer and antibody on gold nanoparticles was employed for the detection of lipocalin-2. Probe immobilization was optimized on MWCN-modified circular-IDE, and saturation of 800nM of aptamer on the GNP-antibody facilitated the identification of lipocalin-2 at concentrations as low as 1 pg/mL, with an R2 value of 0.9716 [y = 2.1058x - 2.7351]. Furthermore, lipocalin-2 spiking in serum increased the current responses in correlation with the concentrations of lipocalin-2, indicating selective identification without interference. In addition, nonimmune antibody and GNP-conjugated complementary aptamer did not increase the current responses, affirming the specific detection of lipocalin-2. This MWCN-modified circular-IDE biosensor, utilizing aptamer-antibody interactions, aids in identifying the condition of ulcerative colitis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have