Abstract

BackgroundNitrogen (N) plays an important role in the formation of tea quality-related compounds, like amino acids and flavor/aroma origin compounds. Lipids, which have been reported to be affected by N deficiency, are precursors to the generation of flavor/aroma origin compounds in tea plant. However, there is no literature about the lipid profiles of tea plant affected by N fertilization. Hence, we hypothesize that the biosynthesis of flavor-related compounds in tea was affected by N through its regulation of lipid metabolism.ResultsIn this study, mature leaves and new shoots of tea plant grown under three N levels at the rates of 0, 285 and 474 kg/ha were applied for ultra-performance liquid chromatography-mass spectrometry (UPLC/MS) based lipidomic analysis. Totally, 178 lipid species were identified. The results showed that the composition of lipid compounds in mature leaves and new shoots varied dramatically, which was also affected by N levels. The higher content of the storage lipid TAG and higher carbon (C)/N ratio in mature leaves than that of new shoots in tea plants grown under low N level (0 kg/ha) suggested that tea plants could remobilize the C stored in TAG to maintain their C/N balance and help to improve the quality of tea. N fertilization resulted in a higher content of the compounds 36:6 MGDG and 36:6 DGDG. Since these compounds contain linolenic acid (18:3), a precursor to the formation of aroma origin compounds, we suggested their increase could contribute to the quality of tea.ConclusionsTaken together, the present work indicated that appropriate application of N fertilizer could balance the lipid metabolism and the formation of flavor/aroma origin compounds, which help to improve the quality of tea. Moreover, excess N fertilization might deteriorate the aroma quality of made tea due to increases of precursors leading to grassy odor.

Highlights

  • Nitrogen (N) plays an important role in the formation of tea quality-related compounds, like amino acids and flavor/aroma origin compounds

  • All the main plant lipid classes were measured, with phospholipids being represented by PC (27 species), PE (26 species), PS (8 species), PI (2 species) and PG (6 species), and galactolipids being represented by MGDG (23 species), digalactosyl diacylglycerol (DGDG) (21 species) and sulphoquinovosyl diacylglycerol (SQDG) (13 species)

  • The content of TAG in mature leaves was higher than that of new shoots in tea plants grown under low N level (Figs. 2 and 4), likely suggesting that tea plants could use the C stored in TAG to maintain their growth performance and the shoots to sprout in early spring

Read more

Summary

Introduction

Nitrogen (N) plays an important role in the formation of tea quality-related compounds, like amino acids and flavor/aroma origin compounds. A perennial evergreen shrub that is classified within the genus Camellia in the family Theaceae, contains abundant primary and secondary metabolites including free amino acids, flavonoids, and caffeine These metabolite compounds are related to tea quality; their. Liu et al BMC Plant Biology (2017) 17:165 the compounds phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG) and phosphatidylinositol (PI), while the glycolipid group includes monogalactosyldiaclyglycerol (MGDG), digalactosyl diacylglycerol (DGDG) and sulphoquinovosyl diacylglycerol (SQDG), and diacylglycerol (DAG) and triacylglycerol (TAG) are both neutral lipids. The composition of these compounds differs between plant cellular membranes, tissues and species, and is strongly influenced by nutrients [11, 12]. N limitations have been shown to have a significant overall effect on the lipid composition of algae [16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call