Abstract

Acinetobacter baumannii is known for its antibiotic resistance and is increasingly found outside of healthcare settings. To survive colder temperatures, bacteria, including A. baumannii, adapt by modifying glycerophospholipids (GPL) to maintain membrane flexibility. This study examines the lipid composition of six clinical A. baumannii strains, including the virulent AB5075, at two temperatures. At 18°C, five strains consistently show an increase in palmitoleic acid (C16:1), while ABVal2 uniquely shows an increase in oleic acid (C18:1). LC-HRMS2 analysis identifies shifts in GPL and glycerolipid composition between 18°C and 37°C, highlighting variations in phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) lipids. ABVal2 shows increased PE with C18:1 and C16:1 at 18°C, but no change in PG, in contrast to other strains that show increased PE and PG with C16:1. Notably, although A. baumannii typically lacks FabA, a key enzyme for unsaturated fatty acid synthesis, this enzyme was found in both ABVal2 and ABVal3. In addition, ABVal2 contains five candidate desaturases that may contribute to its lipid profile. The study also reveals variations in strain motility and biofilm formation over temperature. These findings enhance our understanding of A. baumannii's physiological adaptations, survival strategies and ecological fitness in different environments.IMPORTANCEAcinetobacter baumannii, a bacterium known for its resistance to antibiotics, is a concern in healthcare settings. This study focused on understanding how this bacterium adapts to different temperatures and how its lipid composition changes. Lipids are the building blocks of cell membranes. By studying these changes, scientists can gain insights into how the bacterium survives and behaves in various environments. This understanding improves our understanding of its global dissemination capabilities. The results of the study contribute to our broader understanding of how Acinetobacter baumannii works, which is important for developing strategies to combat its impact on patient health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.