Abstract

We have reported that the α 1A-adrenergic receptor (α 1AAR) in rat-1 fibroblasts is a lipid raft protein. Here we examined whether disrupting lipid rafts by methyl-β-cyclodextrin (MCD) sequestration of cholesterol affects α 1AAR signaling. Unexpectedly, MCD increased α 1AAR-dependent basal inositol phosphate formation and p38 mitogen-activated protein kinase activation in a cholesterol-dependent manner. It also initiated internalization of surface α 1AAR, which was partially blocked by receptor inhibition. Binding assays revealed MCD-mediated increases in receptor agonist affinity as well as reciprocal decreases in inverse agonist affinity, a behavior that is usually interpreted as a shift toward the active receptor conformation. In untreated cells a fraction of the receptor was found to be present in preassociated receptor/G protein complexes, which rapidly dissociate upon receptor stimulation. Consistent with MCD-induced signaling, raft disruption resulted in an increase in receptor/G protein complexes. These results strongly suggest that lipid rafts constrain basal α 1AAR activity; however, preassembled receptor/G protein complexes could still provide a mechanism for accelerating α 1AAR signaling following stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.