Abstract

AbstractTo investigate whether oxygen radicals would be generated by cephaloridine (CER) in the renal cortical microsomes obtained from rats and whether the microsomal lipid peroxidation would be promoted by CER, the microsomes were incubated under a pure oxygen atomosphere in a medium containing the reduced nicotinamide adenine dinucleotide phosphate regenerating system, under various conditions. Generations of superoxide anion and hydrogen peroxide and malondialdehyde formation were all dependent on microsomal protein concentrations, incubation periods and CER concentrations. Scavengers of the microsomal lipid peroxidation induced by CER. (+)-cyanidanol-3, mannitol, sodium benzoate and N-acetyl tryptophan, which are scavengers of hydroxyl free radicals, inhibited the CER-stimulated lipid peroxidation in the microsomes. Histidine, a scavenger of hydroxyl free radicals and singlet oxygen, and alpha-tocopherol, reduced-glutathione and NN′-diphenyl-p-phenylenediamine, the three of which are non-specific antioxidants, also inhibited the CER-stimulated lipid peroxidation in the microsomes. Accordingly, our findings may strongly support that CER generates not only superoxide anions and hydrogen peroxide but also hydroxyl free radicals in the kidney, and these generated oxygen radicals react with the membrane lipids to induce peroxidation and nephrotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call