Abstract
The effect of Co(II) ion on the reaction of hydrogen peroxide with DNA was investigated by a DNA sequencing technique using 32P-5'-end-labeled DNA fragments obtained from human c-Ha-ras-1 protooncogene. Co(II) induced strong DNA cleavage in the presence of hydrogen peroxide even without alkali treatment. Guanine residues were the most alkali-labile site, and the extent of cleavages at the positions of thymine and cytosine was dependent on the sequence. Adenine residues were relatively resistive. Diethylenetriaminepentaacetic acid, present in excess over Co(II), inhibited DNA cleavage. Singlet oxygen scavengers (dimethylfuran, sodium azide, 1,4-diazabicyclo[2.2.2]octane, dGMP), sulfur compounds (methional, methionine), and superoxide dismutase inhibited DNA cleavage completely. Hydroxyl radical scavengers were not so effective as singlet oxygen scavengers. ESR studies using 2,2,6,6-tetramethyl-4-piperidone as a singlet oxygen trap suggest that Co(II) reacts with hydrogen peroxide to produce singlet oxygen or its equivalent. ESR studies using 5,5-dimethylpyrroline N-oxide (DMPO) showed that the hydroxyl radical adduct of DMPO was also formed. The results suggest that Co(II) ion binds to DNA and subsequently reacts with hydrogen peroxide to produce singlet oxygen and hydroxyl radicals and that singlet oxygen plays a more important role in the DNA damage than hydroxyl free radicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.