Abstract

Ultrasonic processing can suit a number of potential applications in the dairy industry. However, the impact of ultrasound treatment on milk stability during storage has not been fully explored under wider ranges of frequencies, specific energies and temperature applications. The effect of ultrasonication on lipid oxidation was investigated in various types of milk. Four batches of raw milk (up to 2L) were sonicated at various frequencies (20, 400, 1000, 1600 and 2000kHz), using different temperatures (4, 20, 45 and 63°C), sonication times and ultrasound energy inputs up to 409kJ/kg. Pasteurized skim milk was also sonicated at low and high frequency for comparison. In selected experiments, non-sonicated and sonicated samples were stored at 4°C and were drawn periodically up to 14days for SPME–GCMS analysis. The cavitational yield, characterized in all systems in water, was highest between 400kHz and 1000kHz. Volatile compounds from milk lipid oxidation were detected and exceeded their odor threshold values at 400kHz and 1000kHz at specific energies greater than 271kJ/kg in raw milk. However, no oxidative volatile compounds were detected below 230kJ/kg in batch systems at the tested frequencies under refrigerated conditions. Skim milk showed a lower energy threshold for oxidative volatile formation. The same oxidative volatiles were detected after various passes of milk through a 0.3L flow cell enclosing a 20kHz horn and operating above 90kJ/kg. This study showed that lipid oxidation in milk can be controlled by decreasing the sonication time and the temperature in the system depending on the fat content in the sample among other factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.