Abstract

Maintaining cellular lipid composition is essential for many cell processes. Our previous study has demonstrated that Spt23 is an important transcription factor within the cell and responsible for the regulation of fatty acid desaturase genes. Disruption of SPT23 results in increased lipid saturation. In the present study, we found that lipid saturation caused by SPT23 deletion exhibited a growth defect under ethanol stress and increased chitin contents. Ergosterol synthesis-related genes were up-regulated to protect cells from plasma membrane damage in the presence of ethanol. The cell wall stress caused by increased chitin contents could not be attenuated by up-regulation of phospholipids synthesis-related genes in spt23Δ. Besides, lipid saturation induced expression of unfolded protein response (UPR) genes and reactive oxygen species (ROS) accumulation followed by activation of the cellular antioxidant system, which is associated with endoplasmic reticulum functions. Taken together, our data suggested that lipid homeostasis has a close connection with cell responses to both plasma membrane stress and endoplasmic reticulum stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call