Abstract

Lipid, fatty acid and protein content were determined individually on 7 phyllosomata, 69 clear pueruli, 286 pre-moult pueruli, and 86 juvenile western rock lobster (WRL) collected from four locations between the settlement seasons 2000 to 2006 to evaluate compositional changes during the non-feeding puerulus stage. Only the lipid content, particularly the phospholipids, decreased significantly with development. Protein declined sharply following moult to the juvenile. PL comprised between 86-94% of total lipid in all animals, and declined most between phyllosomata and clear pueruli (238.5 to 121.4 mg g(-1) DW) (p<0.001). Triacylglycerols were the only lipid to increase in absolute amounts with development, but declined 53% on average following moult to juvenile. This increase in TAG is likely due to the conversion of phospholipids to triacylglycerols. Monounsaturated fatty acids were the main energy form utilised during benthic development while polyunsaturated fatty acids showed a high degree of sparing. The n-3:n-6 fatty acid ratio of juveniles indicates that they may be approaching critically low levels of stored lipid energy reserves. Both protein, and lipid, declined sharply from the final puerulus phase to the juvenile confirming that a high energetic demand is required to fuel the moulting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call