Abstract
Cells sequester neutral lipids in bodies called lipid droplets. Thus, the formation and breakdown of the droplets are important for cellular metabolism; unfortunately, these processes are difficult to quantify. Here, we used time-lapse confocal microscopy to track the formation, movement and size changes of lipid droplets throughout the cell cycle in fission yeast Schizosaccharomyces pombe. In theory, the number of lipid droplets in these cells must increase for daughter cells to have the same number of droplets as the parent at a reference point in the cell cycle. We observed stable droplet formation events in G2 phase that were divided evenly between de novo formation of nascent droplets and fission of preexisting droplets. The observations that lipid droplet number is linked to the cell cycle and that droplets can form via fission were both new discoveries. Thus, we scrutinized each fission event for multiple signatures to eliminate possible artifacts from our microscopy. We augmented our time-lapse confocal microscopy with electron microscopy, which showed lipid droplet 'intermediates': droplets shaped like dumbbells that are potentially in transition states between two spherical droplets. Using these complementary microscopy techniques and also dynamic simulations, we show that lipid droplets can form by fission.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have