Abstract
Although membrane proteins fold and function in a lipid bilayer constituting cell membranes, their structure and functionality can be recapitulated in diverse amphiphilic assemblies whose compositions deviate from native membranes. It remains unclear how various hydrophobic environments can stabilize membrane proteins and whether lipids play any role therein. Here, using the evolutionary unrelated α-helical and β-barrel membrane proteins of Escherichia coli , we find that the hydrophobic thickness and the strength of amphiphile- amphiphile packing are critical environmental determinants of membrane protein stability. Lipid solvation enhances stability by facilitating residue burial in the protein interior and strengthens the cooperative network by promoting the propagation of local structural perturbations. This study demonstrates that lipids not only modulate membrane proteins' stability but also their response to external stimuli.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have