Abstract

Several of the world's major spiny lobster fisheries, including Jasus edwardsii in Australasia, have gone into dramatic decline due to decreasing recruitment of their lecithotrophic postlarvae. There is evidence that the decline is related to poor nutritional condition of the postlarvae, especially lipid that is accumulated in large quantities during the preceding pelagic larval stage. Therefore, characterizing the lipid composition of the likely potential zooplankton prey of the larvae (phyllosomas) of spiny lobsters will provide new insights into their nutritional requirements. The lipid class and fatty acid composition of more than 30 species of likely zooplankton prey of the larvae of the spiny lobster, J. edwardsii, were determined. These results showed that most zooplankton prey had a high proportion of their lipid content as polar lipid (PL) (range of 9.4–94.8%, mean of 76.1 ± 2.6%). Zooplankton prey provide phyllosomas with polyunsaturated fatty acids (PUFA) for growth and development, as well as a range of other important fatty acids that are accumulated as PL and used for fuelling the migration of the subsequent lecithotrophic postlarvae across the continental shelf. Overall, these results indicate that phyllosomas consume prey with wide ranging lipid content, but dominated by PL, and high in docosahexaenoic acid, eicosapentaenoic acid and the key fatty acids used for energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.