Abstract

AbstractClassical enzyme optimization exploits the chemistry confined to the 20 canonical amino acids encoded by the standard genetic code. ‘Genetic code engineering’ allows the global substitution of particular residues with synthetic analogues, endowing proteins with chemical diversity not found in nature. These proteins are congeners of the parent protein because they originate from the same gene sequence, but contain a fraction of noncanonical amino acids. Global substitutions of methionine, proline, phenylalanine, and tyrosine have been carried out with related analogues in Thermoanaerobacter thermohydrosulfuricus lipase. This study represents the first extensive report of an important biocatalyst substituted with a high number of noncanonical amino acids. The generated lipase congeners displayed special features such as enhanced activation, elevated enzyme activity (by up to 25 %) and substrate tolerance (by up to 40 %), and changes in optimal temperature (by up to 20 °C) and pH (by up to 3). These emergent features achieved by genetic code engineering might be important not only for academic research, but also for numerous economical applications in the food, detergent, chemical, pharmaceutical, leather, textile, cosmetic, and paper industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.