Abstract

Novel amphiphilic triblock copolymers poly(β-thioether ester)-b-poly(ethylene glycol)-b-poly(β-thioether ester) (PTE-b-PEG-b-PTE) were designed for the first time and used as carriers for the sustained release of the hydrophobic drug curcumin (Cur). These BAB-type triblock copolymers were synthesized via one-step enzymatic polycondensation with catalysis by immobilized lipase B from Candida antarctica (CALB). The copolymers could self-assemble to form flower-like nanosized micelles in aqueous solution. The pH-triggered disassembly behaviors of the micelles were evaluated from the changes of the micellar size and molecular weight due to the acid-degradable β-thiopropionate groups in the hydrophobic PTE core. Cur was encapsulated into the micelles and showed faster release at pH 5.0 than pH 7.4. In vitro experiments indicated that the copolymers were non-cytotoxic, while the Cur-loaded micelles effectively inhibited the proliferation of HeLa cells. All these findings demonstrated the potential of PTE-b-PEG-b-PTE triblock copolymers as a promising pH-responsive nanocarrier for controlled drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call