Abstract

We present a multiscale modeling approach for simulation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer micelles in aqueous solution. We rely on systematic elimination of computationally expensive degrees of freedom yet retain implicitly their influence on the remaining degrees freedom in a coarser-grained model. Quantum chemistry (QC) calculations, atomistic explicit solvent (AES) molecular dynamics (MD) simulations, and coarse-grained implicit solvent (CGIS) simulations have been applied to investigate physical properties of these important self-assembling triblock copolymers. High-level QC calculations have been used to parametrize classical atomistic force fields that implicitly take into account and reproduce the important energetic and structural features due to correlations of electronic degrees of freedom. AES MD simulations utilizing the QC-based force fields have been used to provide structural and conformational properties of polymers in aqueous solution which were subsequently used for parametrization of the CGIS model using the Inverted Boltzmann method. The CGIS simulations were then employed to investigate structural properties of two PEO-PPO-PEO micelles (EO13-PO30-EO13 and EO99-PO65-EO99 also known as Pluronic L64 and F127, respectively) in aqueous solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call