Abstract

A key phenotype associated with type 2 diabetes in humans is impaired mitochondrial oxidative metabolism in skeletal muscle, a pattern potentially contributing to increased lipid accumulation and impaired metabolic flexibility-in turn, central features of both insulin resistance and diabetes. Since thyroid hormone regulates mitochondrial gene expression and function in skeletal muscle, reductions in T3-mediated transcription may contribute to diabetes-related impairments in oxidative metabolism. We review the evidence for relationships between thyroid hormone action and diabetes risk, and discuss potential mechanisms linking intracellular thyroid hormone availability, thyroid receptor action, and the transcriptional coactivator PGC1 in regulating oxidative metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.