Abstract

What is the central question of this study? Do intrinsic abnormalities in oxygenation and/or muscle oxidative metabolism contribute to exercise intolerance in adolescents with mild cystic fibrosis? What is the main finding and its importance? This study found no evidence that in adolescents with mild cystic fibrosis in a stable clinical state intrinsic abnormalities in skeletal muscle oxidative metabolism seem to play a clinical significant role. Based on these results, we concluded that there is no metabolic constraint to benefit from exercise training. Patients with cystic fibrosis (CF) are reported to have limited exercise capacity. There is no consensus about a possible abnormality in skeletal muscle oxidative metabolism in CF. Our aim was to test the hypothesis that abnormalities in oxygenation and/or muscle oxidative metabolism contribute to exercise intolerance in adolescents with mild CF. Ten adolescents with CF (12-18 years of age; forced expiratory volume in 1 s >80% of predicted; and resting oxygen saturation >94%) and 10 healthy age-matched control (HC) subjects were tested with supine cycle ergometry using near-infrared spectroscopy and (31)P magnetic resonance spectroscopy to study skeletal muscle oxygenation and oxidative metabolism during rest, exercise and recovery. No statistically significant (P > 0.1) differences in peak workload and peak oxygen uptake per kilogram lean body mass were found between CF and HC subjects. No differences were found between CF and HC subjects in bulk changes of quadriceps phosphocreatine (P = 0.550) and inorganic phosphate (P = 0.896) content and pH (P = 0.512) during symptom-limited exercise. Furthermore, we found statistically identical kinetics for phosphocreatine resynthesis during recovery for CF and HC subjects (P = 0.53). No statistically significant difference in peak exercise arbitrary units for total haemoglobin content was found between CF and HC subjects (P = 0.66). The results of this study provide evidence that in patients with mild CF and a stable clinical status (without signs of systemic inflammation and/or chronic Pseudomonas aeruginosa colonization), no intrinsic metabolic constraints and/or abnormalities in oxygenation and/or muscle oxidative metabolism contribute to exercise intolerance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.