Abstract

Heterogeneous flow pathways through the soil determine the transport of dissolved and particle-bound nutritional elements like phosphorus (P) to ground and surface waters. This study was designed to understand the spatial patterns of P in agriculturally used soils and the mechanisms causing P accumulation and depletion at the centimetre scale. We conducted dye tracer experiments using Brilliant Blue on a loamy Stagnosol in North-Eastern-Germany. The plant-available P was analysed using double lactate extraction (DL-P). The plant-available P content of the topsoil was significantly higher than that of the subsoil in all three replicates (p < 0.001). The topsoil’s stained areas showed significantly higher P contents than unstained areas (p < 0.05), while the opposite was found for the subsoil. The P content varied enormously across all observed soil profiles (4 to 112 mg P kg−1 soil) and different categories of flow patterns (matrix flow, flow fingers, macropore flow, and no visible transport pathways). The P contents of these transport pathways differed significantly and followed the order: Pmatrix flow > Pfinger flow > Pno visible transport pathways > Pmacropore flow. We conclude that P tends to accumulate along flow pathways in the topsoil in the observed fertilized and tilled mineral soil. In contrast, in the subsoil at a generally lower P level, P is depleted from the prominent macroporous flow domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call