Abstract

Palaeochannels are remnants of rivers or stream channels filled with younger sediments over the period of time. In ancient times, these rivers/channels were thriving in phenomenal conditions, but due to frequent tectonic activities, they lost the direction of their original path and were gradually either lost or buried under thick beds of younger alluvium. Palaeochannels act as reservoirs for fresh groundwater since they are made up of coarser sediments and were formerly flowing rivers. Depending on the groundwater regime and local topography, these could either be saturated or dry. The palaeochannels have high groundwater potential if saturated. These are ideal sites for artificial groundwater recharge, if dry. The identification of palaeochannels becomes quite challenging if they are buried under thick deposits of finer younger sediments. In the present study, an attempt has been made to characterize the Saraswati River Palaeochannel in parts of Yamuna Nagar and Kurukshetra districts of Haryana by using surface and subsurface geophysical methods. Till date, the palaeochannels in this area were mainly discerned on the basis of remote sensing only; therefore, geophysical characterization of these palaeochannels has been attempted in this study. In surface geophysical methods, electrical resistivity surveys, especially gradient resistivity profiling (GRP) and vertical electrical sounding (VES), were conducted in the study area, while electrical and natural gamma logging was used as subsurface geophysical approaches to identify the coarser sands of buried palaeochannels. The main objective of the study was to characterize the Saraswati River palaeochannel and analyze the quality of the groundwater stored in the palaeochannel in the study area. The findings were compared with the well-log data and were found in good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.