Abstract
Lake-level change in the mid-latitudes is causally linked to variability in precipitation and evaporation that are dynamically linked to cyclone passages and larger-scale atmospheric variability across temporal scales. Hence, lake-level variability is both a product of and a record of synoptic-scale climate variability. Here, a daily synoptic classification for 1956–1999 is used to evaluate historical Lake Michigan-Huron water levels in the context of changes in the frequency and intensity of synoptic-scale phenomena. The results demonstrate that both within-type evolution and shifts in the relative frequency of synoptic types contributed to precipitation and evaporation anomalies through the historical period with the former reflecting the importance of the Great Lakes in determining the regional climate. Shifts in the frequency and intensity of synoptic winter types are also demonstrated to be contributing anomalous precipitation and evaporation coincident with phases of lake level associated with the 30-year quasi-periodicity. The synoptic-scale mechanisms of lake-level change over longer time scales illuminated here can be used to infer information about past climate states and improve projections of lake level from model simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have