Abstract
Martensitic phase transformation in NiTi shape memory alloys (SMA) occurs over a hierarchy of spatial scales, as evidenced from observed multiscale patterns of the martensitic phase fraction, which depend on the material microstructure and on the size of the SMA specimen. This paper presents a methodology for the multiscale tracking of the thermally induced martensitic phase transformation process in NiTi SMA. Fine scale stochastic phase field simulations are coupled to macroscale experimental measurements through the compound wavelet matrix method (CWM). A novel process for obtaining CWM fine scale wavelet coefficients is used that enhances the effectiveness of the method in transferring uncertainties from fine to coarse scales, and also ensures the preservation of spatial correlations in the phase fraction pattern. Size effects, well-documented in the literature, play an important role in designing the multiscale tracking methodology. Molecular dynamics (MD) simulations are employed to verify the phase field simulations in terms of different statistical measures and to demonstrate size effects at the nanometer scale. The effects of thermally induced martensite phase fraction uncertainties on the constitutive response of NiTi SMA is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Modelling and Simulation in Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.