Abstract

The bifunctional aminopyridine ligands H2 N-(CH2 )n -4-C5 H4 N (n=0, L1; 1, L2; 2, L3) have been utilized for the preparation of the rhenium complexes [Re(phen)(CO)3 (L1-L3)]+ (1-3; phen=phenanthroline). Complexes 2 and 3 with NH2 -coordinated L2 and L3, respectively, were coupled with cycloplatinated motifs {Pt(ppy)Cl} and {Pt(dpyb)}+ (ppy=2-phenylpyridine, dpyb=dipyridylbenzene) to give the bimetallic species [Re(phen)(CO)3 (μ-L2/L3)Pt(ppy)Cl]+ (4, 6) and [Re(phen)(CO)3 (μ-L2/L3)Pt(dpyb)]2+ (5, 7). In solution, complexes 4 and 6 show 3 MLCT {Re}-based emission at 298 K, which changes to the 3 IL(ppy) state at 77 K. The photophysical properties of compounds 5 and 7 display a pronounced concentration dependence, presumably due to the formation of bimolecular aggregates. Analysis of the spectroscopic data, combined with TD-DFT simulations, suggest that unconventional heteroleptic {Re(phen)}⋅⋅⋅{Pt(dpyb)} π-π stacking operates as the driving force for ground-state association. The latter, together with intra- and intermolecular energy-transfer processes, determines the appearance of multiple emission bands and results in nonlinear relaxation kinetics of the excited states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call