Abstract
Biofilm physiology was characterized by four biofilm constituents, i.e., polysaccharides, proteins (PN), humic-like substances and phospholipids (PL), for the first time to explore the relationships between biofilm characteristics and nitrification performance in moving-bed biofilm reactors (MBBRs) designed for pretreatment of polluted raw surface water for potable supply. The biofilm compositions depended highly on the balance of microbial decay and nitrification processes. The increased ammonia loading greatly regulated the community structure, promoting the dominance of nitrifiers and their proportions in the nitrifying biofilm. Nitrification rate and activity correlated linearly with the fractions of volatile solids (VS), PN and PL, which were related to nitrification processes in the biofilm. The specific biofilm activity demonstrated an exponential-asymptotic relationship with ratios of PN/VS and PL/VS. Thus, analyzing biofilm characteristics can be valid for estimating nitrification performance in MBBRs, and may offer engineers with basis to optimize MBBR design and operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.