Abstract

Hydrology filters propagule bank expression in herbaceous Carolina bays, but the strength of this filter’s effects on community composition at different points along the hydrologic gradient of these southeastern U.S. depressional wetlands is unknown. We used an experimental approach to determine the pattern of vegetation expression from propagule banks of Carolina bays exposed to different hydrologic conditions and gradients. Propagule banks of sediment cores collected from six Carolina bays were placed in bins, each of which was allocated to one of three hydrologic treatments: moist soil (MS), mid-summer drawdown (DD), or flooded (FL). After one season of vegetation development (1995) in the hydrologic treatments, half of the bins were left flat and the remaining were sloped to produce a finer moisture gradient within each bin. We compared taxa richness, community composition based on cover, and cover patterns of eight abundant species that developed in bins over the season (1996) after sloping. Species richness was significantly higher in the moist soil treatment and in sloped bins. Community composition, however, was affected by the hydrologic treatment only and not the finer-scale flooding gradient produced by sloping. Under flooded conditions, floating-leaved and submerged aquatics had higher cover; vegetation converged on simpler, less variable communities dominated by obligate wetland species, with species exhibiting different patterns of abundance over small changes in water depth. Emergent species typically had higher cover in moist soil and drawdown treatments. These results confirm a tight mechanistic link between hydrology and vegetation patterns within Carolina bays, but suggest that the strength of this link is not uniform across the gradient. The linkage weakens with drier conditions as both facultative wetland and upland species recruit into the standing vegetation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.