Abstract
AbstractThe Central Indian Tectonic Zone demarcates the zone of amalgamation between the North Indian Craton and the South Indian Craton. Presently, the major controversies in the existing tectonic models of the Central Indian Tectonic Zone revolve around the direction of subduction and the precise timing of accretion between the North Indian Craton and the South Indian Craton. A new model for the tectonic evolution of the Central Indian Tectonic Zone is postulated in this contribution, based on recent geological and geophysical evidence, combined with previously documented tectonic configurations. The present study employs the slab break-off hypothesis and subsequent polarity reversal to explain the tectonic processes involved in the evolution of the Central Indian Tectonic Zone. We propose that the subduction initiated (c. 2.5 Ga) in a S-directed system producing island-arc sequences on the South Indian Craton. The southward subduction regime culminated with slab break-off underneath the South Indian Craton betweenc. 1.65 Ga and 1.55 Ga, which subsequently induced subduction polarity reversal and set the course for N-directed subduction (<1.55 Ga). The final closure along the Central Indian Tectonic Zone is governed by the collisional regime during the Sausar Orogeny (1.0–0.9 Ga).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.