Abstract
The global demand for high-quality animal products, particularly dairy, has intensified the need for more precise and efficient livestock feed formulation. This review connects data-driven decision-making in optimizing feed formulation to enhance milk quantity and quality while addressing animal health implications. Modern feed formulation has evolved into a sophisticated, data-centric process by integrating diverse data sources such as nutritional databases, environmental data, and animal performance metrics. Leveraging advanced analytical techniques, such as machine learning and optimization algorithms, have created highly accurate feed formulations tailored to specific livestock needs. These innovations increase milk yield and contribute to developing dairy products with higher nutritional value. Decision Support Systems play a complementary role by offering real-time decision-making capabilities, enabling farmers to make data-informed adjustments composition based on changing conditions. However, despite its potential, the widespread adoption of data-driven feed formulation faces challenges such as data quality, technological limitations, and industry resistance, mostly disjointed processes. The objectives of this review are: (i) to explore the current advancements and challenges of data-driven decision-making in feed formulation, focusing on its connection to milk quantity and quality, and (ii) to highlight how this optimized feed formulation strategy improves sustainable dairy production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have