Abstract

In metal-organic frameworks (MOFs), organic linkers are subject to postsynthetic exchange (PSE) when new linkers reach sites of PSE by diffusion. Here, we show that during PSE, a bulky organic linker is able to penetrate narrow-window MOF crystals. The bulky linker migrates by continuously replacing the linkers gating the otherwise impassable windows and serially occupying an array of backbone sites, a mechanism we term through-backbone diffusion. A necessary consequence of this process is the accumulation of missing-linker defects along the diffusion trajectories. Using fluorescence intensity and lifetime imaging microscopy, we found a gradient of missing-linker defects from the crystal surface to the interior, consistent with the spatial progression of PSE. Our success in incorporating bulky functional groups via PSE extends the scope of MOFs that can be used to host sizable, sophisticated guest species, including large catalysts or biomolecules, which were previously deemed only incorporable into MOFs of very large windows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.