Abstract

The chlamydial deubiquitinase Cdu1 of the obligate intracellular human pathogenic bacterium Chlamydia trachomatis plays important roles in the maintenance of chlamydial infection. Despite the structural similarities shared with its homologue Cdu2, both DUBs display remarkable differences in their enzymatic activity towards poly-UB chain substrates. Whereas Cdu1 is highly active towards K48- and K63- poly-UB chains, Cdu2 activity is restricted mostly to mono-UB substrates. Here, we shed light on the molecular mechanisms of the differential activity and the substrate specificity of Cdu1 to better understand the cellular processes it is involved in, including infection-related events. We found that the strikingly elevated activity of Cdu1 relative to its paralogue Cdu2 can be attributed to an N-terminally extended α-helix, which has not been observed in Cdu2. Moreover, by employing isothermal titration calorimetry and nuclear magnetic resonance spectroscopy, we demonstrate the differential recognition of K48- and K63-linked poly-UB substrates by Cdu1. Whereas K63-linked poly-UB substrates appear to be recognized by Cdu1 with only two independent ubiquitin interaction sites, up to four different binding interfaces are present for K48-linked ubiquitin chains. Combined, our data suggest that Cdu1 possesses a poly-UB chain directed activity that may enable its function as a multipurpose DUB with a broad substrate specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.