Abstract

Meagre (Argyrosomus regius), is a benthopelagic species rapidly emerging in aquaculture, due to its low food to biomass conversion rate, good fillet yield and ease of production. Tracing a species genomic background along with describing the genetic basis of important traits can greatly influence both conservation strategies and production perspectives. In this study, we employed ddRAD sequencing of 266 fish from six F1 meagre families, to construct a high-density genetic map comprising 4529 polymorphic SNP markers. The QTL mapping analysis provided a genomic appreciation for the weight trait identifying a statistically significant QTL on linkage group 15 (LG15). The comparative genomics analysis with six teleost species revealed an evolutionarily conserved karyotype structure. The synteny observed, verified the already well-known fusion events of the three-spine stickleback genome, reinforced the evidence of reduced evolutionary distance of Sciaenids with the Sparidae family, reflected the evolutionary proximity with Dicentrarchus labrax, traced several putative chromosomal rearrangements and a prominent putative fusion event in meagre’s LG17. This study presents novel elements concerning the genome evolutionary history of a non-model teleost species recently adopted in aquaculture, starts to unravel the genetic basis of the species growth-related traits, and provides a high-density genetic map as a tool that can help to further establish meagre as a valuable resource for research and production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call