Abstract
Low phosphorus availability is a major factor limiting rice productivity. In this study, a population of backcross recombinant inbred lines (BILs) derived from an inter-specific cross (Oryza sativa L. × O. rufipogon Griff.) was used for genetic linkage map construction and quantitative trait locus (QTL) mapping. The results showed that a linkage map consisting of 153 markers was constructed. Twenty-one out of 231 BILs were tolerant of low-phosphorus according to the index to P-deficiency tolerance. Twenty-three QTLs on chromosomes 1, 2, 3, 7, 8, 9 and 11 were detected, of which eight QTLs showed high (22.93–37.32%) contribution to phenotypic variation. In addition, most of QTLs in this study (18 out of 23 QTLs) were located and overlapped on the chromosome 1, 3 and 11, which individually explained 6.07–34.70% phenotypic variation, indicating that there might be multiple main effect QTLs related to P-deficiency tolerance in O. rufipogon, and these QTLs might cluster in the same region. These results would provide helpful information for cloning and utilizing the P-deficiency tolerance-responsive genes from O. rufipogon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.