Abstract
For each positive integer n, Khovanov and Rozansky constructed an invariant of links in the form of a doubly-graded cohomology theory whose Euler characteristic is the sl ( n ) link polynomial. We use Lagrangian Floer cohomology on some suitable affine varieties to build a similar series of link invariants, and we conjecture them to be equal to those of Khovanov and Rozansky after a collapse of the bigrading. Our work is a generalization of that of Seidel and Smith, who treated the case n = 2 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.