Abstract
We show that in many examples the non-displaceability of Lagrangian submanifolds by Hamiltonian isotopy can be proved via Lagrangian Floer cohomology with non-unitary line bundle. The examples include all monotone Lagrangian torus fibers in a toric Fano manifold (which was also proven by Entov and Polterovich via the theory of symplectic quasi-states) and some non-monotone Lagrangian torus fibers. We also extend the results by Oh and the author about the computations of Floer cohomology of Lagrangian torus fibers to the case of all toric Fano manifolds, removing the convexity assumption in the previous work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.