Abstract

Previous research mostly used simplistic measures and limited linguistic features (e.g., personal pronouns, absolutist words, and sentiment words) in a text to identify its author’s psychological states. In this study, we proposed using additional linguistic features, that is, sentiments polarities and emotions, to classify texts of various psychological states. A large dataset of forum posts including texts of anxiety, depression, suicide ideation, and normal states were experimented with machine-learning algorithms. The results showed that the proposed linguistic features with machine-learning algorithms, namely Support Vector Machine and Deep Learning achieved a high level of performance in the detection of psychological state. The study represents one of the first attempts that uses sentiment polarities and emotions to detect texts of psychological states, and the findings may contribute to our understanding of how accuracy may be enhanced in the detection of various psychological states. Significance and suggestions of the study are also offered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.