Abstract

Linguistic features, particularly the use of first-person singular pronouns (FPSPs), have been identified as potential indicators of suicidal ideation. Machine learning (ML) and natural language processing (NLP) have shown potential in suicide detection, but their clinical applicability remains underexplored. This study aimed to identify linguistic features associated with suicidal ideation and develop ML models for detection. NLP techniques were applied to clinical interview transcripts (n = 319) to extract relevant features, including four cases of FPSP (subjective, objective, dative, and possessive cases) and first-person plural pronouns (FPPPs). Logistic regression analyses were conducted for each linguistic feature, controlling for age, gender, and depression. Gradient boosting, support vector machine, random forest, decision tree, and logistic regression were trained and evaluated. Results indicated that all four cases of FPSPs were associated with depression (p < 0.05) but only the use of objective FPSPs was significantly associated with suicidal ideation (p = 0.02). Logistic regression and support vector machine models successfully detected suicidal ideation, achieving an area under the curve (AUC) of 0.57 (p < 0.05). In conclusion, FPSPs identified during clinical interviews might be a promising indicator of suicidal ideation in Chinese patients. ML algorithms might have the potential to aid clinicians in improving the detection of suicidal ideation in clinical settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.