Abstract
In this paper we prove the following theorem. Let $\cal S$ be a linear space. Assume that $\cal S$ has an automorphism group $G$ which is line-transitive and point-imprimitive with $k < 9$. Then $\cal S$ is one of the following:- (a) A projective plane of order $4$ or $7$, (b) One of $2$ linear spaces with $v=91$ and $k=6$, (c) One of $467$ linear spaces with $v=729$ and $k=8$. In all cases the full automorphism group Aut(${\cal S} \!$) is known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.